Day 21

Kalman Filter Examples

Static State Estimation

- recall the static state estimation problem we have been studying
- the process or plant model

$$
\begin{aligned}
A_{t}=1, \quad B_{t}=0, \quad R_{t}=0 \quad x_{t} & =A_{t} x_{t-1}+B_{t} u_{t}+\varepsilon_{t} \\
& =x_{t-1}
\end{aligned}
$$

- the observation model

$$
C_{t}=1, \quad Q_{t}=\sigma_{t}^{2} \quad Z_{t}=x_{t}+\delta_{t}
$$

Static State Estimation

- how well does the Kalman filter work

Static State Estimation

- notice that we need to specify the measurement noise covariance Q_{t}
D how sensitive is the Kalman filter to Q_{t} ?
- e.g., what if we use a Q_{t} that is much smaller than the actual measurement noise?
- e.g., what if we use a Q_{t} that is much larger than the actual measurement noise?

Static State Estimation

specified $Q_{t}=0.01 *$ actual Q_{t}

Static State Estimation

specified $Q_{t}=100 *$ actual Q_{t}

Static State Estimation

- suppose our measurements get progressively noisier over time

noise variance increases 10% for each successive measurement

Tank of Water

- estimate the level of water in the tank; the water could be
> static, filling, or emptying
- not sloshing or sloshing

Tank of Water: Static and Not Sloshing

Tank of Water: Static and Not Sloshing

- notice that in this case the Kalman filter tends towards estimating a constant level because the plant noise covariance is small compared to the measurement noise covariance
b the estimated state is much smoother than the measurements
- what happens if we increase the plant noise covariance?

Tank of Water: Filling and Not Sloshing

Tank of Water: Static and Not Sloshing

- notice that in this case the Kalman filter tends towards estimating values that are closer to the measurements
- increasing the plant noise covariance causes the filter to place more weight on the measurements

Tank of Water: Filling and not Sloshing

- suppose the true situation is that the tank is filling at a constant rate but we use the static tank plant model
- i.e., we have a plant model that does not accurately model the state transition

Tank of Water: Filling and not Sloshing

Tank of Water: Filling and not Sloshing

- notice that in this case the estimated state trails behind the true level
b estimated state has a much greater error than the noisy measurements
- if the plant model does not accurately model reality than you can expect poor results
- however, increasing the plant noise covariance will allow the filter to weight the measurements more heavily in the estimation...

Tank of Water: Filling and not Sloshing

Tank of Water: Filling and not Sloshing

- it is not clear if we have gained anything in this case
- the estimated state is reasonable but it is not clear if it is more accurate than the measurements
- what happens if we change the plant model to more accurately reflect the filling?

Tank of Water: Filling and not Sloshing

Tank of Water: Filling and not Sloshing

- notice that the estimated state is more accurate and smoother than the measurements
- what about the filling rate?

Tank of Water: Filling and not Sloshing

Tank of Water: Filling and not Sloshing

- notice that the estimated filling rate seems to jump more than the estimated level
- this should not be surprising as we never actually measure the filling rate directly
। it is being inferred from the measured level (which is quite noisy)

Tank of Water: Static and not Sloshing

can we trick the filter by using the filling plant model when the level is static?

- hopefully not, as the filter should converge to a fill rate of zero!

Tank of Water: Static and not Sloshing

Tank of Water: Static and not Sloshing

